6 research outputs found

    Evaluating feature extractors and dimension reduction methods for near infrared face recognition systems

    Get PDF
    This study evaluates the performance of global and local feature extractors as well as dimension reduction methods in NIR domain. Zernike moments (ZMs), Independent Component Analysis (ICA), Radon Transform + Discrete Cosine Transform (RDCT), Radon Transform + Discrete Wavelet Transform (RDWT) are employed as global feature extractors and Local Binary Pattern (LBP), Gabor Wavelets (GW), Discrete Wavelet Transform (DWT) and Undecimated Discrete Wavelet Transform (UDWT) are used as local feature extractors. For evaluation of dimension reduction methods Principal Component Analysis (PCA), Kernel Principal Component Analysis (KPCA), Linear Discriminant Analysis + Principal Component Analysis (Fisherface), Kernel Fisher Discriminant Analysis (KFD) and Spectral Regression Discriminant Analysis (SRDA) are used. Experiments conducted on CASIA NIR database and PolyU-NIRFD database indicate that ZMs as a global feature extractor, UDWT as a local feature extractor and SRDA as a dimension reduction method have superior overall performance compared to some other methods in the presence of facial expressions, eyeglasses, head rotation, image noise and misalignments

    Assessment of time-lapse in visible and thermal face recognition

    Get PDF
    Although face recognition seems as an easy task for human, automatic face recognition is a much more challenging task due to variations in time, illumination and pose. In this paper, the influence of time-lapse on visible and thermal images is examined. Orthogonal moment invariants are used as a feature extractor to analyze the effect of time-lapse on thermal and visible images and the results are compared with conventional Principal Component Analysis (PCA). A new triangle square ratio criterion is employed instead of Euclidean distance to enhance the performance of nearest neighbor classifier. The results of this study indicate that the ideal feature vectors can be represented with high discrimination power due to the global characteristic of orthogonal moment invariants. Moreover, the effect of time-lapse has been decreasing and enhancing the accuracy of face recognition considerably in comparison with PCA. Furthermore, our experimental results based on moment invariant and triangle square ratio criterion show that the proposed approach achieves on average 13.6% higher in recognition rate than PCA

    Near infrared face recognition: a literature survey

    No full text
    As a primary modality in biometrics, human face recognition has been employed widely in the computer vision domain because of its performance in a wide range of applications such as surveillance systems and forensics. Recently, near infrared (NIR) imagery has been used in many face recognition systems because of the high robustness to illumination changes in the acquired images. Even though some surveys have been conducted in this infrared domain, they have focused on thermal infrared methods rather than NIR methods. Furthermore, none of the previous infrared surveys provided comprehensive and critical analyses of NIR methods. Therefore, this paper presents an up-to-date survey of the well- known NIR methods that are used to solve the problem of illumination. The paper includes a discussion of the bene fi ts and drawbacks of various NIR methods. Finally, the most promising avenues for future research are highlighted

    Accurate palm vein recognition based on wavelet scattering and spectral regression kernel discriminant analysis

    No full text
    Palm vein recognition (PVR) is a promising new biometric that has been applied successfully as a method of access control by many organizations, which has even further potential in the field of forensics. The palm vein pattern has highly discriminative features that are difficult to forge because of its subcutaneous position in the palm. Despite considerable progress and a few practical issues, providing accurate palm vein readings has remained an unsolved issue in biometrics. We propose a robust and more accurate PVR method based on the combination of wavelet scattering (WS) with spectral regression kernel discriminant analysis (SRKDA). As the dimension of WS generated features is quite large, SRKDA is required to reduce the extracted features to enhance the discrimination. The results based on two public databases-PolyU Hyper Spectral Palmprint public database and PolyU Multi Spectral Palmprint-show the high performance of the proposed scheme in comparison with state-of-the-art methods. The proposed approach scored a 99.44% identification rate and a 99.90% verification rate [equal error rate (EER) = 0.1%] for the hyperspectral database and a 99.97% identification rate and a 99.98% verification rate (EER = 0.019%) for the multispectral database

    Near infrared face recognition using Zernike moments and Hermite kernels

    No full text
    This work proposes a novel face recognition method based on Zernike moments (ZMs) and Hermite kernels (HKs) to cope with variations in facial expression, changes in head pose and scale, occlusions due to wearing eyeglasses and the effects of time lapse. Near infrared images are used to tackle the impact of illumination changes on face recognition, and a combination of global and local features is utilized in the decision fusion step. In the global part, ZMs are used as a feature extractor and in the local part, the images are partitioned into multiple patches and filtered patch-wise with HKs. Finally, principal component analysis followed by linear discriminant analysis is applied to data vectors to generate salient features and decision fusion is applied on the feature vectors to properly combine both global and local features. Experimental results on CASIA NIR and PolyU NIR face databases clearly show that the proposed method achieves significantly higher face recognition accuracy compared with existing methods
    corecore